The project deals with the development of sustainable methods of asymmetric catalysis and their application in the synthesis of biologically relevant compounds. Various methods of catalysis (organo-, metal- and enzymatic catalysis) will be used separately or in cooperative manner. Special attention will be turned to the increase of efficiency of reactions by using selective catalysts, cascade or one-pot reactions. As a new method, a halogen bond donor catalyzed asymmetric reactions will be studied. New reactions will be applied on the synthesis of biologically active compounds and their derivatives.
As a result, new asymmetric catalytic sustainable methods for the creating molecular complexity will be developed. Principles of green chemistry will take root in science, in the mode of thinking of PhD students and by PhD graduates in Estonian chemistry enterprises.
Estonia's significant mineral resource, peat, is currently mainly extracted and exported as growth substrates for European agriculture. We offer technological solutions to produce high-value materials from by-products/residue of peat production. We are exploring two different experimental chemical valorization directions for peat. Firstly, the production of carbon nanomaterials (carbon nanoparticles, carbon quantum dots CQD), which have a wide range of applications from biomedicine to optics and electronic components. Examples: bioimaging applications, portable sensors, solar panel components etc. The application of CQDs is rapidly developing and new start-up ideas appear often. Secondly, the production of chemically modified biopolymers as high-performance alternatives to petroleum-derived products such as construction panels, packaging containers or conventional adsorbent materials. The resulting products contribute to long-term carbon sequestration, helping to balance the carbon footprint of the peat industry.