​​​Dzmitry Kananovich​

Projects

Year: 2023 - 2029
The project focuses on developing technologies for the separation of valuable components from intermediate products of ore enrichment and used magnets that are supplied to Estonia or potentially supplied. The emphasis is on characterizing the best possible raw materials, intermediates, and products during the development of separation technologies. This includes favoring liquid-assisted mechanochemical processes through the selective formation of metal-organic complexes and adhering to the principles of circular and green chemistry. The objectives of the project are: a) analysis of samples generated from the recycling of ores and their enriched intermediate products, as well as magnets containing metals; b) development and valorization of separation technologies for rare earth metals, utilizing mechanochemical methods and metal-organic complexes; c) evaluating the sustainability of the developed processes using the metrics of green chemistry
Year: 2024 - 2028
Sensing, capturing and separating enantiomers is important for environmental safety, agricultural chemistry, and drug design. The use of hemicucurbiturils is an effective strategy because of the combination of various monomers in a single-step templated mechanochemical synthesis. Due to the absence of bulk solvent the self-organizing efficiency is amplified and there is less waste - the process is green and sustainable. The current work will study the fundamentals of self-organization of hemicucurbiturils, the binding (capturing) of chiral molecules, and detecting chirality using supramolecular complexes. In the long term, the empirical observations will be combined with results from computational chemistry and cheminformatics to build models for predicting necessary monomers and reaction conditions to form macrocycles with desired properties. The outcomes of the project are expected to be highly useful for organizations and industries that monitor, use, or manufacture chiral compounds
Year: 2022 - 2026
The environmental impact of the pharmaceutical industry is a huge problem. The production and use of pharmaceuticals cause high CO2 emissions, contamination of soils, biota, and water, and even dangers to human health through carcinogenic impurities. Especially the use of solvents is a major problem. The European Green Deal has led to strict regulations on environmental pollution by the pharma industry, causing manufacturers to move outside of the EU due to the high costs associated with green pharma. This results in supply chain fragility and low crisis preparedness in Europe. New methods to produce pharmaceuticals in a green, efficient, and economically friendly way are required. The IMPACTIVE project brings together the expertise and knowledge from two COST Actions and will develop novel green methods to produce active pharmaceutical ingredients (APIs) using mechanochemistry as a disruptive technology (as acknowledged by IUPAC). Mechanochemistry uses mechanical processes, such as ball milling, twin-screw extrusion, resonant acoustic mixing, and spray drying, to induce chemical reactions. The advantages of mechanochemistry include: no solvent use, high efficiency, low costs, and reduced energy use and CO2 emission. Upon completion of the project, we will provide proof-of-concept at a small pilot scale of the use of mechanochemistry to produce 6 APIs from 3 different families of compounds. Based on a recent study, switching to mechanochemistry can reduce terrestrial ecotoxicity and CO2 emissions by more than 85%, while production costs were reduced with 12%. The results of the IMPACTIVE project will thus enable pharmaceutical manufacturers to move back to Europe while minimizing environmental pollution.Through our strong dissemination and communication strategy we will ensure that the project´s results are shared with scientists, the pharmaceutical industry, and stakeholders from regulatory and public authorities to achieve maximum impact.