Copper is an essential cofactor for more than twenty enzymes crucial for cellular energy production, antioxidative defense, and oxidative metabolism. Free copper ions, however, are toxic and copper metabolism is therefore highly controlled. Dysregulation of copper homeostasis occurs in multiple diseases, including Wilson's (WD) and Alzheimer's disease (AD). This project strives to develop a comprehensive understanding of human copper metabolism and tools for its regulation. This will be achieved using a systems biology approach, which we applied earlier to intracellular Cu(I) proteome. We will expand this research to Cu(II) proteome in the blood and cerebrospinal fluid by using a novel LC-ICP MS-based approach. The expected results will substantially advance the knowledge on copper metabolism, and facilitate the search for molecular tools for its regulation. The latter will be tested in cellular and animal disease models and could provide novel molecular tools for WD and AD treatment.
Recognitions
Estonian National Science Award in Chemistry and Molecular Biology