Simona Bartkova

Publications

Journal / Periodical: Analytical Chemistry
Authors: Bartkova, S.; Zapotoczna, M.; Sanka, I.; Scheler, O.
Year: 2024
Journal / Periodical: Analytica Chimica Acta
Authors: Sanka, Immanuel; Bartkova, Simona; Pata, Pille; Ernits, Mart; Meinberg, Monika Merje; Agu, Natali; Aruoja, Villem; Smolander, Olli-Pekka; Scheler, Ott
Year: 2023
Journal / Periodical: Current Opinion in Biotechnology
Authors: Ruszczak, A.; Bartkova, S.; Zapotoczna, M.; Scheler, O.; Garstecki, P.
Year: 2022

Projects

Year: 2025 - 2028
Reproduction is regulated by the endocrine system and its disturbances by endocrine disruptive chemicals (EDCs) may lead to infertility. As humans are constantly exposed to EDCs through the use of common household items and personal care products, it is important to test chemicals for their potential activity as endocrine disruptors affecting reproductive function. Project MERLON aims to study the effects of EDCs on sexual development and function in order to deliver new approach methodologies (NAMs) for EDC identification. While MERLON targets the vulnerable stages of development from fetal to puberty, MERLON2, with additional partner TalTech, will add one more sensitive window of susceptibility in female reproduction to the project: the adult preovulatory ovarian follicle, where the oocyte maturation takes place. In collaboration with TalTech, it was recently demonstrated that follicular somatic cells (FSCs) lose sensitivity to follicle stimulating hormone (FSH) in the presence of a mixture of 13 EDCs. FSH is crucial for both, the oocyte maturation and for the synthesis of steroid hormones by the FSCs. We have also demonstrated the intricate heterogeneity of somatic cells in the ovarian follicle. The roles that FSC subpopulations play in the adverse effects of EDCs is unknown and unaddressed by the initial MERLON project. MERLON2 will complement the aims of the consortium by developing NAMs based on single cell transcriptomics, automated image analysis and machine learning to understand the effect of EDCs on FSC subpopulations and their sensitivity to FSH. This will increase the research output for MERLON in the number of proposed NAMs and quantitative adverse outcome pathways. As a result of MERLON2 the range of stakeholders will enlarge, increasing the public awareness related to the harmful health effects of EDCs, and proposing new approaches to resolve the complicates issue of testing substances in everyday products for their adverse effects on human fertility.
Year: 2020 - 2024
New or reoccurring bacterial threats are a major challenge of this century, and a delayed response due to the lack of field-testing options risks human lives and causing an epidemic. Classical microbiology techniques are relatively slow, while cytometric methods allow the measurement of cell count, morphology etc. in an easy, reliable, and fast way. State of the art flow cytometers are high-throughput benchtop instruments that are neither portable nor cheap enough for field testing, causing logistic delays in bacterial testing in remote areas and conflict zones or where infrastructure is limited. The goal of this R&D activity is to create the proof of concept of and develop the methodology for low-cost, fully portable flow cytometers based on droplet microfluidics, which will not only allow field analysis of bacteria, but will have a single-cell resolution. Furthermore, through cognitive electronics, the system will be easy to use and fully automated from sample input to result output.

Recognitions

Co-creator of the project DropliNet, which was one of the four winning projects in the Horizon Europe funded international online Hackathon & acceleration program called Plastic Fantastic.
2024
2nd prize in Dolomite microfluidics scientific competition with the titled project: Droplet-based microfluidics workflow for investigating micro-and nano-plastic modulation of antimicrobial resistance
2023
Dowling College (New York, USA): Graduated with the highest honor (summa cum laude) ECC Women’s Basketball Scholar-Athlete of the year Scholar-Athlete of the Year ESPN/CoSIDA Scholar All-American (first female in Dowling’s history)
2010