The importance of antimicrobial membranes has significantly grown during the recent COVID pandemic era. Nanofibrous antimicrobial membranes have seen novel applications in biomedicine, such as face masks against viral threats or wound dressings used in chronic patient care. Composite electrospun nanofiber meshes are convenient to use as antimicrobial membranes. At present, the lack of automated, inline quality control limits both the pilot and large scale production of multi-material multilayer composite membranes. The alternative, manual re-calibration greatly limits production throughput and thus commercial viability. The goal of this R&D activity is to create technology for scalable inline quality control of electrospun nanofiber meshes. Using cognitive electronics, the system will be capable of continuous multiparameter monitoring and electrospinning process control to maintain optimal product quality and distribution.
New or reoccurring bacterial threats are a major challenge of this century, and a delayed response due to the lack of field-testing options risks human lives and causing an epidemic. Classical microbiology techniques are relatively slow, while cytometric methods allow the measurement of cell count, morphology etc. in an easy, reliable, and fast way. State of the art flow cytometers are high-throughput benchtop instruments that are neither portable nor cheap enough for field testing, causing logistic delays in bacterial testing in remote areas and conflict zones or where infrastructure is limited. The goal of this R&D activity is to create the proof of concept of and develop the methodology for low-cost, fully portable flow cytometers based on droplet microfluidics, which will not only allow field analysis of bacteria, but will have a single-cell resolution. Furthermore, through cognitive electronics, the system will be easy to use and fully automated from sample input to result output.
Recognitions
IEE1860 BioMEMS: Estonian E-Course Quality Label 202