Petri-Jaan Lahtvee

Publications

Quantitative systems biology analysis of lipid-producing yeast Rhodotorula toruloides cultivation
Journal / Periodical: FEBS3+ Baltics: Biochemistry at the Fore Line: Abstract Book
Authors: Reķēna, Alīna; Pinheiro, Marina; Pals, Kristjan; Belouah, Isma; Bonturi, Nemailla; Gavrilović, Srðan; Kerkhoven, Eduard J; Lahtvee, Petri-Jaan
Year: 2025
Metabolic Regulation of Acetyl-CoA and NADPH Production Pathways in Rhodotorula Toruloides
Journal / Periodical: Metabolic Engineering 16 (ME16) : conference proceedings
Authors: Reķēna, Alīna; Gavrilović, Srðan; Lahtvee, Petri-Jaan
Year: 2025
Journal / Periodical: Applied Microbiology and Biotechnology
Authors: Reķēna, A.; Pals, K.; Gavrilović, S.; Lahtvee, P-J.
Year: 2025

Projects

Year: 2023 - 2029
DigiBio project focuses on digitalisation, bioeconomy, and sustainability, scientific domains which constitute a high priority in national, regional, and EU strategies and policies. As the second large European Centre within this area, the Estonian Centre for Bioesustainability (ECB) will place Estonia in a very competitive position in European R&I. With DTU assistance, ECB will establish a major research, technology development, and innovation platform for the generation of cutting-edge bioengineering solutions focused on sustainable bio-production through biology digitalisation. This platform will accelerate lab-to-market translation of bioengineering solutions, diversifying Estonian national industry. DigiBio’s overarching objective is to establish a state-of-the-art CoE for digitalisation of biology in Estonia, through upgrading the ECB.
Year: 2021 - 2025
The transition towards a clean economy requires novel processes for chemical, material, and liquid fuel production that use sustainable substrates, have improved life cycle, and hence a reduced carbon footprint. Cell factories provide the ultimate platform for this purpose to drive the world economy and mitigate risks emanating from climate change. An exponential increase in process productivity by rapid technological developments in the fields of additive manufacturing and synthetic biology has the potential to influence nearly every industry because of adaptability and continual cost reduction. In this project, we offer interdisciplinary research that combines the advances in additive manufacturing of living materials with synthetic biology of non-conventional yeasts to manufacture a novel flow chemistry platform for creating biorefineries that can convert sustainable, locally available substrates into value-added oleochemicals with an aim to meet sustainability goals of society.
Year: 2025 - 2025
The project provides a comprehensive assessment of Estonia’s wood resources and the technological pathways for their high-value valorisation. It supports national goals to expand the bio-based economy and advance climate-neutral development. The project evaluates the availability of wood suitable for mechanical, microbiological, and chemical processing up to 2050, analyses relevant TRL 6–9 technologies, and identifies development directions that fit Estonia’s resource base, workforce capacity, and strategic priorities. The study maps domestic and potentially importable wood resources, considering species, assortments, environmental restrictions, and an annual harvesting volume of 10 million m³. It assesses resource availability across different forest owner groups, including the State Forest Management Centre (RMK), private forest owners, and industry-related large owners. It provides a concise overview of chemical and microbiological wood valorisation technologies and related product groups across technology generations. The analysis evaluates suitable fractionation and end-product manufacturing technologies for Estonia, taking into account resource scale, supply chain feasibility, human capital, investment needs, and climate policy obligations, including CO₂ sequestration and LULUCF methodology. It also examines additional resource requirements—such as other bio-based feedstocks, water and energy demand, and infrastructure needs—arising from the selected technological pathways. The project reviews current and future demand for engineering, chemical, and wood chemistry experts, drawing on OSKA analyses, and assesses laboratory and R&D infrastructure needs in connection with the establishment of the Wood Valorisation Focus Centre and Metrosert’s Bio-refinery Development Centre. The results provide an integrated overview of Estonia’s strategic options for wood valorisation and offer recommendations for building a competitive, high-value wood-based value chain that strengthens the national bioeconomy and supports long-term climate objectives.