Year: 2024 - 2028
The nervous system consists of multiple cell types with distinct physiological specializations and gene expression patterns. In tissue, these cells form a complex, intertwined network that is subject to constant interaction between different cell types. This complexity poses a challenge for researchers in both separating cell types for analysis as well as studying interactions and information transfer between cells. In this application, we propose a molecular neuroscience study addressing both aspects. First, we are developing proteomics methods to allow analysis of newly synthesized proteins on a cell type-specific basis. Second, we shall use novel genetic tools for cell type-specific stimulation and gene expression analysis in primary co-cultures of neurons and astroglial cells. We shall use this system to probe gene expression signatures in neuron-astrocyte communication and determine the transmitters that form the basis of this communication.